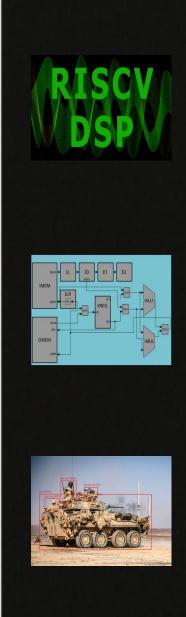


RISCV-DSP processing cores implement features and instruction set architecture extensions to create a family of DSPs targeting application-specific design requirements.


Bit Width	Standard					Extension			AL/Edge VDII
	E		Σ	Щ	D	Q	Z	Х	AI/Edge XPU
20-bit	√					✓		✓	✓
24-bit	✓		✓	✓		✓		✓	✓
32-bit	✓	✓	✓	\		✓	√	✓	✓
64-bit		√	√	✓	√		√	✓	✓

Processor Features

- Harvard architecture memory interface
- Embedded fixed-point operations (RV32Q)
- Native complex-valued operations (RV32Z)
- Extended execution coprocessor interface (RV32X)
- Variable bit-width core architecture (RV20/RV24)

Available Technology

- RISC-V DSP cores are available for use and licensing
- Open-hardware reference designs available in Verilog HDL
- Compiled devices available for emulation and FPGA integration
- Fully integrated into the COPRTHR® toolchain as a device library

